The Impact of Game-Based Learning on Student Competencies in Science: A Systematic Review

ISSN-p: 2460-8300, ISSN-e: 2528-4339

Dampak Pembelajaran Berbasis Permainan terhadap Kompetensi Siswa dalam Sains: Tinjauan Sistematis

diterima: 27-05-2025, disetujui: 18-06-2025, diterbitkan: 30 Juni 2025 doi: 10.24832/jpnk.v10i1.5188

Ria Rochmi Safitri, Ulya Ghifrani Rahmania, Anggraita Febriana Putri, Jumadi

Program Studi Pendidikan Sains Universitas Negeri Yogyakarta (UNY) - Indonesia Email: riarochmi.2022@student.uny.ac.id

Abstract: Game-Based Learning (GBL) is an application that encourages active engagement and enhances knowledge and skills. Its effectiveness in fostering student competencies has been proven and applies in various fields. This systematic review analyzes the science topics, student competencies, and learning outcomes associated with Game-Based Learning implementation in primary and secondary education. The method used refers to the procedures outlined by Kitchenham and Charters. The reporting adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) quidelines. The research sample consisted of 22 articles extracted from 478 articles based on predetermined inclusion and exclusion criteria. The review results show that GBL is applicable across all core science domains-namely physics, biology, and chemistry. The competencies that can be improved using Game-Based Learning consist of three aspects, namely affective, cognitive, and psychomotor. Science learning using Game-Based Learning can significantly improve the three students' competencies in almost all studies. To conclude, Game-Based Learning can serve as an effective and recommended learning strategy to support the digital transformation of science education.

Keywords: game-based learning, science education, systematic review, student engagement

Abstrak: Game-Based Learning (GBL) merupakan aplikasi yang mendorong keterlibatan aktif dan meningkatkan pengetahuan serta keterampilan siswa. Efektivitasnya dalam mengembangkan kompetensi telah terbukti dan digunakan di berbagai bidang. Penelitian ini bertujuan untuk menganalisis secara sistematis topik sains, kompetensi siswa, dan capaian pembelajaran yang terkait dengan penerapan Game-Based Learning pada pendidikan dasar dan menengah. Metode yang digunakan mengacu pada langkah-langkah yang dijelaskan oleh Kitchenham dan Charters yang disajikan dengan berpedoman pada Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Sampel penelitian terdiri atas 22 artikel yang diekstraksi dari 478 artikel berdasarkan kriteria inklusi dan eksklusi yang telah ditentukan sebelumnya. Hasil tinjauan menunjukkan bahwa topik sains dapat diakomodasi menggunakan Game-Based Learning di semua

cabang sains, yaitu fisika, biologi, dan kimia. Kompetensi/keterampilan yang dapat ditingkatkan menggunakan Game-Based Learning terdiri atas tiga aspek, yaitu afektif, kognitif, dan psikomotorik. Pembelajaran sains menggunakan Game-Based Learning dapat meningkatkan ketiga aspek kompetensi siswa secara signifikan di hampir semua pembelajaran. Dengan demikian, Game-Based Learning dapat diposisikan sebagai pendekatan strategis dalam mendukung transformasi digital pembelajaran sains.

Kata kunci: game-based learning, pendidikan sains, tinjauan sistematis, keterlibatan siswa

INTRODUCTION

Considering current learning trends, classroom learning has developed rapidly by using beyond chalk and blackboards to deliver lesson materials (Lau et al., 2014). Siagian et al. (2007) stated that interactive learning media in teaching and learning activities has changed classroom dynamics. Material previously taught through a monotonous lecture method can now be provided with more variety by integrating text, sound, moving images, and video. In line with that, Lau et al. (2014) argued that among the various media types, Game-Based Learning (GBL) is one of the media considered adequate for learning. Research related to GBL is increasingly popular because of the paradigm that this medium can significantly increase student motivation in learning.

Hainey et al. (2016) defined GBL as the application development specifically implemented for learning purposes, where a particular subject is taught to encourage active involvement. Furthermore, Qian & Clark (2016) stated that GBL creates a context in which knowledge and skill enhancement occur through game content and play. When problem-solving and challenges are presented in gaming activities, it provides a sense of accomplishment to the player or learner. In addition, students' internal motivation and acceptance of learning technology can influence learning success and the quality of the playing experience in the context of learning using GBL (Ninaus et al., 2017). GBL has the potential to meet the needs for autonomy, competence, and relatedness through the design of appropriate game mechanics so that it can generate autonomous motivation and a more meaningful learning experience (Eyupoglu & Nietfeld, 2019; Proulx et al., 2017).

Many successes have been recorded when GBL media was used in learning. Recent research by Alotaibi (2024) showed that GBL has moderate to large effects on cognitive (g=0.46, p<0.001), social (g=0.38, p<0.001), emotional (g=0.35, p<0.001), motivational (g=0.40, p<0.001), and engagement (g=0.44, p<0.001) outcomes in early childhood and highlights its potential to promote learning and development. In line with that, research by Safitri & Jumadi (2024) proved that the use of GBL media based on Problem-Based Learning is significantly and strongly able to improve students' critical thinking skills in science learning, with an effect size of 0.972, which includes the large category. Other studies have shown that

GBL plays an essential role in improving 21st-century skills (Bodnar & Clark, 2017; Huang et al., 2020; Lestari et al., 2019; Ryu et al., 2021), problem-solving skills (Rosydiana et al., 2023), scientific thinking (Aida et al., 2022), motivation (Sung & Hwang, 2013; Ubaidullah et al., 2019; Zou et al., 2021), self-regulated learning (Rajan, 2022; Sabourin et al., 2012), self-efficacy (Meluso et al., 2012; Sung & Hwang, 2013; Zou et al., 2021), speaking skills (L. Li et al., 2023), socio-physical expertise and skills (Pramono et al., 2021), and student involvement in learning (Lai et al., 2012). GBL media has also been developed in various scientific disciplines, including science (Aida et al., 2022; Asniza et al., 2021; Meluso et al., 2012; Ristanto et al., 2022; Rosydiana et al., 2023; Sung & Hwang, 2013; M. Wang & Zheng, 2021), mathematics (Ahmad et al., 2010; Hung et al., 2014; Sun et al., 2021), computer science (Kaldarova et al., 2023; Schmitz et al., 2011), and language (Huang et al., 2020; Pitarch, 2018).

Many systematic reviews discuss the use of GBL media in various subjects (Alper et al., 2021; Hainey et al., 2016; Jabbar & Felicia, 2015; Noroozi et al., 2020), but there are still a few systematic reviews that discuss the use of GBL media in science learning (M.-C. Li & Tsai, 2013). Meanwhile, studies related to contextual needs, such as the demand for scientific literacy, low student interest in science, and post-pandemic digital learning, are urgently needed to improve the quality of learning. It shows that studies related to the effectiveness of GBL media in the context of science learning are still limited and require further attention. This systematic review focuses on the science learning context and investigates the following research questions.

- RQ1. What science topics are applied in learning using GBL?
- RQ2. What competencies/skills can be achieved when implementing GBL in science learning?
- RQ3. What are the results obtained from implementing GBL in science learning? Considering the growing research evidence, this study aims to systematically analyze the science topics, student competencies, and learning outcomes associated with GBL implementation in primary and secondary education.

METHOD

This systematic review analyses secondary studies obtained based on reviews of previous research. This study aims to summarize GBL research trends in science subjects and their relevance in education. A systematic review of an issue is very important because it can identify and report research results that can be used as a basis for further research.

The literature review method in this article adapts the systematic review procedure guidelines proposed by (Kitchenham & Charters, 2007). The method used consists of the following steps.

- Planning the review is a step in determining research questions.
- Conducting the review, including literature search, determining criteria, data

extraction, data synthesis, and data coding.

 Reporting the review is a step in reporting the analysis results and discussing findings, trends, and conclusions according to PRISMA 2020 guidelines (Page et al., 2021).

The following is a flowchart of the research method presented in Figure 1.

Figure 1 Research Method Flowchart Source: Author, 2024

A literature search was carried out to collect empirical studies resulting from research in the form of articles using Publish or Perish (PoP) software in the Google Scholar search category. This selection is intended to obtain a greater number of articles, thus providing a more accurate representation. The literature search was conducted in October 2023. The keywords used are "game-based learning in science, game-based learning in physics, game-based learning in chemistry, game-based learning in biology," with a year range chosen between 2014-2023 and a maximum number of searches of 500 studies. The initial search found 478 studies and ignored 22 studies that needed to include information on the year of publication of the study. Based on the initial search, the following categories can be identified.

- Types of study include journal articles, proceedings, books, book sections, thesis reports, and dissertation reports.
- The study is in English, and a small part is in Chinese.
- The study is research in various economic, social, educational, medical, and technological fields.
- Education studies include science, mathematics, technology, English, and computer science.
- The initial search discusses learning in games and studies using other learning media.

A total of 478 studies were then sorted based on general criteria established to answer the research questions asked. All studies from the initial search were examined and assessed. The general criteria used are presented below based on the research questions.

- The year of publication is in the range 2014 2023.
- Studies are identified as "articles", not books, book sections, thesis reports, or dissertation reports.

 The study is not a meta-analysis/Systematic Literature Review study of previous studies.

A total of 91 studies were obtained through sorting based on general criteria. These results were obtained by analysing each research title and collecting references from the primary source to determine the form of study presented. Studies in the form of books, book sections, thesis reports, dissertation reports, or other systematic review research are not included in further studies. These articles are then downloaded to be studied in more depth regarding the relevance of the research content.

Apart from the general criteria used to select studies, inclusion criteria are also needed to limit the selected studies further so that they are relevant to the research questions being asked. The inclusion criteria used in this research are as follows.

- The study is research in the field of science education.
- The research participants were elementary to high school students.
- Research is a research article from a journal, not a proceeding.
- The research comes from research articles from reputable journals Q1 and Q2 (checking was done via the Scimagojr website).
- Competencies/skills achieved by students are used as results.

The exclusion criteria in this study are as follows.

- Studies not identified as research results in articles from a journal (for example, proceedings, books, book sections, thesis reports, and dissertation reports).
- The study is a meta-analysis of previous studies.
- Articles published before 2014 or after the fourth quarter of 2023.
- Articles involve kindergarten students, university students, teachers, and the general public as research subjects.
- Articles that do not use English in their presentation.
- Articles originate from reputable journals below Q2 or non-reputable journals.

Some articles cannot be accessed at this stage, so they were removed from the list of studies to be analysed. The study was sorted into 22 studies based on exclusion criteria, which will be carried out in the next stage. Figure 2 shows the resulting PRISMA flowchart.

Analyses were specified for each research question. This step aims to help group all relevant studies based on predetermined criteria. Data collection and analysis require information regarding the author, journal, data source, journal reputation, year of publication, research location, scientific topic, competencies/skills achieved, and research results on applying GBL. Information related to the author, journal, data source, journal reputation, year of publication, and research location is placed in the research identity information. However, a more detailed process of reading and understanding the data is required to collect data related to other parameters.

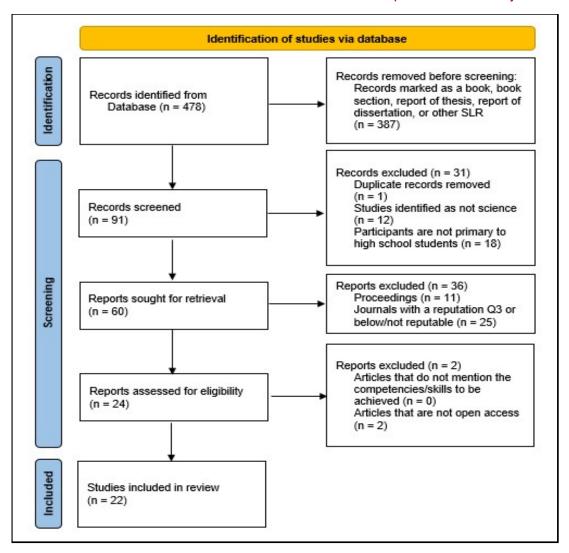


Figure 2 PRISMA Flowchart for Selecting Studies Related to GBL Publications Source: Author, 2024

RESULT AND DISCUSSION

This section describes and discusses the results of the review. As explained at the beginning, study selection was based on inclusion and exclusion criteria, resulting in 22 studies. The data coding process is carried out according to predetermined categories. The results are presented according to the research questions. Table 1 presents data related to article descriptions from 22 studies collected based on journal name, data source, journal reputation, year of publication, and author's country of origin.

Based on Table 1, the studies derive from various data sources. The most significant data source is springer with 23%, followed by ERIC (18%), Taylor & Francis Online (18%), MDPI (9%), Inderscience (5%), Iopscience (5%), IEEExplore (5%), Sage (5%), Science Direct (5%), Wiley (5%), and Jedutechsoci (5%). Among the selected studies, 59% were published in Q1-ranked journals (n = 13), and 41% in Q2-ranked journals (n = 9). These studies were selected based on the

Table 1 Description of Analysed Article

Authors	Journal	Data Source	Index Scopus	Publication Year	Country
Ristanto et	Journal of Turkish	ERIC	Q2	2022	Indonesia
al.	Science Education	MDDI	0.0	2022	
Kotzebue et	Multimodal Technologies	MDPI	Q2	2022	Austria
al.	and Interaction	EDIC	03	2022	Danublic of
Janković & Lambić	Journal of Baltic Science Education	ERIC	Q2	2022	Republic of Serbia
Y. Wang	International Journal of	Tandfonline	Q1	2022	Republic of
i. waiig	Science Education	randioninie	Qı	2022	China
Arboleya-	Education Sciences	MDPI	Q2	2022	Spain
García &	Edded: on Sciences	11511	٧-	2022	opa
Miralles					
Komalaward	International Journal of	Inderscienceo	Q2	2021	Thailand
hana &	Mobile Learning and	nline	-		
Panjaburee	Organisation				
Radulović	Journal of Baltic Science	ERIC	Q2	2021	Republic of
	Education				Serbia
YC. Chen et	Interactive Learning	Tandfonline	Q1	2021	Taiwan
al.	Environments				
Pfirman et al.	Journal of Geoscience	Tandfonline	Q2	2021	Arizona
Do Y O Colile	Education	T	0.3	2024	T I
Bağ & Çalik	Physics Education	Iopscience	Q2	2021	Turkey
CY. Chen et al.	IEEE Access	IEEExplore	Q1	2020	Taiwan
Videnovik et	Multimedia Tools and	Springer	Q1	2020	Macedonia
al.	Applications	Springer	Q1	2020	Массаотна
Yıldırım &	Education and	ERIC	Q1	2020	Turkey
Baran	Information Technologies		ν-		,
S. Chen et	International Journal of	Tandfonline	Q1	2020	Republic of
al.	Science Education		-		China
Jones et al.	Simulation and Gaming	Sage	Q2	2019	USA
Kao et al.	Computers and	Sciencedirect	Q1	2017	Republic of
	Education				China
Price et al.	Journal of Science	Springer	Q1	2016	USA
	Education and				
	Technology				
Sadler et al.	Science Education	Wiley	Q1	2015	USA
Dorji et al.	Journal of Computers in Education	Springer	Q1	2015	Bhutan
Dorji et al.	Educational Technology	Jeductechsoci	Q1	2015	Bhutan
,	and Society		•		
M. P. Chen et	Educational Technology	Springer	Q1	2014	Taiwan
al.	Research and				
	Development				
Corredor et	Journal of Science	Springer	Q1	2014	Colombia
al.	Education and				
	Technology				

Source: Author, 2024

quality of the journal in which they were published, according to Scimago's assessment.

Most of the research, or as much as 55%, was carried out on the Asian continent, where the dominance of research was in the Republic of China (n=3). Then, countries on the European continent (23%), North America (18%), and a small part of South America (5%) followed.

Articles implementing GBL in the science learning experience fluctuate every year. Figure 3 shows the distribution of articles based on the year of publication.

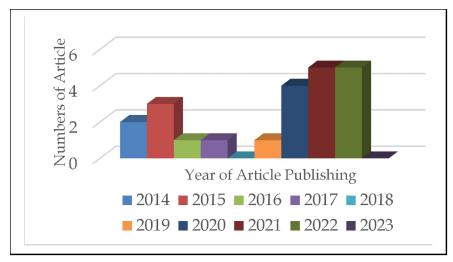


Figure 3 Distribution of Articles Based on Publication Year Source: Author, 2024

Based on Figure 3, the trend of research on learning using GBL was high in 2015 (n=3) but then decreased in 2018. It indicates that there was no research related to learning using GBL in science subjects. The GBL research trend is rising again and reaching its peak in 2021 and 2022, namely five studies for each of these years.

Several criteria have been determined regarding the study's content. Table 2 shows several criteria that will be used to answer the research questions about science topics applied in learning using GBL.

The students involved in this systematic review were students from elementary to high school, with the smallest number of students in a study, 12 students, and the most significant number, 42,195 students. This study, which involved the most significant number of students, was carried out with the help of teachers in many schools. The total number of students involved in all studies was 46,423 students.

Apart from finding out the science topics that are usually taught, this research also aims to find out the competencies/skills that can be accommodated by GBL media and the results of implementing GBL in learning. Table 3 shows the competencies/skills to be achieved and the main results of learning using GBL.

Based on these results, the answers to the questions in this study literature is described as follows.

Table 2 Review Based on Participant Aspects and Topics of Science Material
Taught

Authors	Educational Level	Total	Topic
		participants	
Ristanto et al.	Secondary school	46	Genetic
Kotzebue et al.	Secondary school	84	Sex education
Janković & Lambić	Primary school	113	Natural science (related to
			the biology content)
Y. Wang	Secondary school	155	Magnetic field
Arboleya-García & Miralles	Primary school	111	Marine environment
Komalawardhana & Panjaburee	Primary school	282	Force and motion
Radulović	Secondary school	172	Electric current
YC. Chen et al.	Primary school	168	Light
Pfirman et al.	Secondary school and High school	42195	Polar and Earth system
Bağ & Çalik	Primary school	12	Force
CY. Chen et al.	Primary school	115	Light
Videnovik et al.	Secondary school	40	Living habits of animals in the zoo
Yıldırım & Baran	Secondary school	83	Force, newton's motion law, and friction force
S. Chen et al.	Secondary school	114	Chemical elements and compounds
Jones et al.	Secondary school and High school	18	Transcription and translation
Kao et al.	Secondary school	126	Basic machinery
Price et al.	Primary school	242	Human biological systems
Sadler et al.	High school	1888	Biotechnology
Dorji et al.	High school	129	Energy consumption and
			conservation
Dorji et al.	High school	129	Electric energy conservation
M. P. Chen et al.	Secondary school	115	Chemical formula
Corredor et al.	Primary school	86	Viral reproduction
Total Participants		46423	

Source: Author, 2024

Research Question 1

RQ1. What science topics are applied in learning using GBL?

Several science topics taught using GBL media can be seen in Table 2. These science topics are divided into three groups based on the branch of science, namely physics, biology, and chemistry. Physics topics taught using GBL include magnetic fields (Y. Wang, 2022), force and motion (Baç & Çalik, 2021; Komalawardhana & Panjaburee, 2021; Yýdýrým & Baran, 2020), electric current (Raduloviæ, 2021), light (C.-Y. Chen et al., 2020; Y.-C. Chen et al., 2021), polar and Earth systems

Table 3 Review Based on Aspects of Scientific Competencies/Skills to be Achieved and The Main Results of the Research

Authors	Competencies/skills	Results
Ristanto et al.	achieved conceptual understanding	Students who take part in Flipped Classroom-Digital Game-Based Learning (FC-DGBL) show a better understanding of the concept of Genetics compared to students who take part in traditional learning models.
Kotzebue et al.	motivation and knowledge acquisition	Digital Education Escape Room (DEER) is a significant and empirically proven approach to support learning in the context of sex education. This method also makes a positive contribution to increasing student motivation.
Janković & Lambić	academic achievement	The experimental group that used Kahoot to study Natural Science material achieved significantly higher post-test scores than the control group. There was no significant difference in academic performance between the group that used Quizizz and the other two groups.
Y. Wang	engagement, learning performance, and satisfaction	Augmented Reality Game-based Science Learning (ARGSL) improves student interaction, performance, and learning satisfaction better than game and bookbased learning methods.
Arboleya-García & Miralles	knowledge	Understanding of the marine environment increased in both age groups, children and adults, although the increase was slightly higher in the children's group.
Komalawardhana & Panjaburee	perceptions of learning activities, improvement, and achievement	The students in the game group using a web-based mastery learning approach showed more satisfaction and positive attitudes towards learning activities than students in the conventional game group. Both students with high and low achievements who were involved in games using a web-based mastery learning approach and students with medium and low achievements who were involved in conventional games could gain significant knowledge. Students in the game group with a web-based mastery learning approach significantly outperformed the conventional game group's achievement.
Radulović	educational efficiency and students' involvement	Educational efficiency and student engagement levels are higher in the Game-Based Student Response Systems (GSRS) approach when compared to conventional approaches.
YC. Chen et al.	scientific knowledge and argumentation skills	Three types of learning that use technology, namely game-based instruction (high LTE), video-based instruction (medium LTE), and traditional instruction (low LTE), significantly improve students' scientific knowledge and argumentation skills.
Pfirman et al.	conceptual understanding	Of the 13 states, students in Rhode Island, Oregon, Arizona, and Washington achieved the highest overall scores when using Kahoot!, while the response from students in Ohio and Illinois seemed less favourable, as if they were just guessing.

Bağ & Çalik	students' argumentation	Results from the third pilot study showed that at the beginning of the intervention, elementary school students faced difficulties in referring to evidence and claims in their arguments. Nevertheless, the quality of their arguments gradually improved and involved all argumentative components as time passed.
CY. Chen et al.	conceptual understanding and argumentation skills	The use of Multi-genre digital Game-based Instruction (MGI) resulted in significant improvements in conceptual understanding and argumentation skills compared to those who received only traditional instruction.
Videnovik et al.	learning experience	Factors such as ease of use, utility, student attitude, motivation, and suitability of the educational components in the game will increase the quality of the student's learning experience.
Yıldırım & Baran	academic achievements	The use of instruction involving digital games and physical activity games has a positive impact on student academic achievement.
S. Chen et al.	students' emotions and academic achievement	The experimental group (using cards, board games, and riddles) showed higher levels of positive emotions and lower levels of negative emotions during the intervention period.
Jones et al.	student engagement and the learning experience	The whole activity positively influenced students and teachers because students could understand the Transcription and Translation material in a fun and interesting way through 'KAHOOT!'
Kao et al.	learning outcomes: knowledge acquisition and design creativity.	The marking critical features scaffolding group significantly outperformed the demonstration scaffolding group in gaining conceptual knowledge and in the sensitivity dimension of design creativity. Meanwhile, the group that used demonstration scaffolding scored higher in the flexibility dimension of design creativity.
Price et al.	scientific attitudes and conceptual understanding	There was a slight increase in scientific attitudes, the ability to recognize human biological systems, and students' skills in describing the collaboration of these systems in the context of real-world situations.
Sadler et al.	knowledge, science interest	Participants who engaged in both approaches (using computer-based games and narrative cases) experienced statistically and practically significantly improved biological knowledge assessments at proximal and distal levels. Neither group showed an increase in science interest.
Dorji et al.	learning achievement and energy-saving awareness	RES-battle can decrease the difference between female and male learning achievements reasonably, and energy-saving awareness.
Dorji et al.	learning achievement, awareness, and satisfaction	Designed educational computer games can increase student learning achievement, awareness and satisfaction to a higher level.
M. P. Chen et al.	performance and motivation	Worked examples significantly impact knowledge understanding and marginally impact knowledge application. Students show a mild level of positive motivation to learn chemistry through 3D RPG games.
Corredor et al.	conceptual understanding	Video games stimulate the development of mental models of scientific phenomena that differ from the models formed by conventional educational methods, such as text and graphics.

(Pfirman et al., 2021), basic machinery (Kao et al., 2017), and energy consumption and conservation (Dorji et al., 2015b, 2015a). Biology topics taught using GBL include genetics (Ristanto et al., 2022), sex education (Kotzebue et al., 2022), natural science (Jankoviæ & Lambiæ, 2022), marine environment (Arboleya-García & Miralles, 2022), living habits of animals in the zoo (Videnovik et al., 2020), transcription and translation (Jones et al., 2019), human biological systems (Price et al., 2016), biotechnology (Sadler et al., 2015), and viral reproduction (Corredor et al., 2014). Chemistry topics taught using GBL include chemical elements and compounds (S. Chen et al., 2020) and chemical formulas (M.-P. Chen et al., 2014).

These findings are in line with research conducted by Tsai et al. (2020) which stated that the GAME (Gamification, Assessment, Modeling, Inquiry) pedagogical model is in accordance with the PISA science literacy framework, which assesses students' ability to apply knowledge in the context of everyday life. These results are reinforced by research conducted by Ho et al. (2022) which revealed that games can simulate real global issues, including the climate crisis, social inequality, and cooperation between countries, through the involvement of abstraction processes, solution exploration, and policy experimentation as measured by PISA in the context of science and public policy.

Research Question 2

RQ2. What competencies/skills are achieved when implementing GBL in science learning?

Several competencies/skills that have been taught using GBL media in science learning is seen in Table 3. The competencies are divided into three aspects, namely affective, cognitive, and psychomotor.

Affective aspects that can be achieved when implementing GBL include motivation (M.-P. Chen et al., 2014; Kotzebue et al., 2022), engagement/involvement (Jones et al., 2019; Raduloviæ, 2021; Y. Wang, 2022), learning performance (M.-P. Chen et al., 2014; Y. Wang, 2022), satisfaction (Dorji et al., 2015a; Y. Wang, 2022), perception (Komalawardhana & Panjaburee, 2021), emotions (S. Chen et al., 2020), learning experience (Jones et al., 2019; Videnovik et al., 2020), scientific attitudes (Price et al., 2016), science interest (Sadler et al., 2015), and awareness (Dorji et al., 2015b, 2015a).

Cognitive aspects that can be achieved when implementing GBL include conceptual understanding (C.-Y. Chen et al., 2020; Corredor et al., 2014; Pfirman et al., 2021; Price et al., 2016; Ristanto et al., 2022), knowledge acquisition (Kao et al., 2017; Kotzebue et al., 2022), academic/learning achievement (S. Chen et al., 2020; Dorji et al., 2015a, 2015b; Jankoviæ & Lambiæ, 2022; Komalawardhana & Panjaburee, 2021; Yýldýrým & Baran, 2020), improvement (Komalawardhana & Panjaburee, 2021), educational efficiency (Raduloviæ, 2021), and learning outcomes (Kao et al., 2017).

The psychomotor aspects that can be achieved when implementing GBL are argumentation skills (Baç & Çalik, 2021; C.-Y. Chen et al., 2020; Y.-C. Chen et al., 2021) and design creativity (Kao et al., 2017).

Research conducted by Tsai et al. (2020) stated that the GAME model trains critical thinking, scientific literacy, collaboration, and problem-solving through a technology-based and exploratory approach, and these competencies support Sustainable Development Goal 4 (SDG-4) with an innovative approach based on real challenges and strengthening global competence. The GAME model encourages independent exploration, process-based assessment, and active participation. These competencies are in line with the Merdeka Belajar philosophy. Al-Khayat et al. (2023) through their research strengthen these findings by revealing that GBL encourages active, collaborative, and exploratory learning, which develops critical thinking skills, problem-solving, and creativity. Furthermore, Ho et al. (2022) through their research found that digital and non-digital games significantly improve students' perceptions, knowledge, and attitudes toward SDGs. In digital games, the largest effect reached d=-3.671 for attitudes, especially in high school students.

Research Question 3

RQ3. What are the results obtained from implementing GBL in science learning?

Science learning using GBL generally shows positive results from all reviewed studies. The results of the analysis of these studies can be seen in Table 3. The GBL developed from these studies, mainly utilizes digital technology. The review results of these studies state that science learning using GBL can significantly improve students' affective, cognitive, and psychomotor aspects (Arboleya-García & Miralles, 2022; Baç & Çalik, 2021; C.-Y. Chen et al., 2020; M.-P. Chen et al., 2014; S. Chen et al., 2020; Y.-C. Chen et al., 2021; Corredor et al., 2014; Dorji et al., 2015a, 2015b; Jankoviæ & Lambiæ, 2022; Jones et al., 2019; Kao et al., 2017; Komalawardhana & Panjaburee, 2021; Kotzebue et al., 2022; Pfirman et al., 2021; Raduloviæ, 2021; Ristanto et al., 2022; Sadler et al., 2015; Videnovik et al., 2020; Y. Wang, 2022; Yýldýrým & Baran, 2020). Only one study states a slight increase in students' scientific attitudes after using GBL in learning (Price et al., 2016).

In their research, Ho et al. (2022) stated that the role-based experiential learning model, simulation, and discussion in games can encourage critical reflection and decision-making and provide space for student autonomy and creativity. This idea is in accordance with the concept of Merdeka Belajar which emphasizes active, contextual, collaborative, and fun learning. In another study, H. Li & Zhang (2025) emphasized that the museum GBL design accommodates contextual learning, active participant roles, social cooperation, and personal meaning-making, all of which reflect a pure constructivist approach.

The six dimensions in the constructivist GBL framework that are accommodated are self-determination, contextualization, social interaction, knowledge construction, meaning-making, and immediate feedback. Research by

Hosseinpour & Keshmiri (2025) revealed that GBL reduces irrelevant cognitive load and increases working memory allocation for understanding formation and increases self-efficacy through active, social, and contextual learning experiences. Al-Khayat et al. (2023) also argued that GBL provides opportunities for students to construct meaning, experiment, and interact socially, rather than simply passively receiving information through direct experience and real contexts. GBL is said to be effective when the complexity of the game is under working memory capacity and is accompanied by scaffolding. Games also increase intrinsic motivation because they provide autonomy (options and control), competence (adaptive challenges), and relatedness (cooperation).

CONCLUSION AND RECOMMENDATION Conclusion

The discussion of GBL in this systematic review aims to systematically analyse the science topics, student competencies, and learning outcomes associated with GBL implementation in primary and secondary education. The findings reveal facts about the development of GBL which continues to evolve to this day. GBL supports the development of conceptual understanding, engagement, and argumentation across physics, biology, and chemistry topics in primary and secondary education.

GBL-based science learning has generally been proven to be effective in improving students' affective, cognitive, and psychomotor aspects, although one study only showed a small increase in scientific attitudes. The implication of this research is that GBL can be positioned as a recommended approach in the digital transformation of science education.

Recommendation

Based Learning in science learning is worthy of consideration as an effective approach to fostering enjoyable and meaningful learning experiences for students. Therefore, more focused future studies are needed, such as meta-analyses comparing its effectiveness with other digital strategies or investigations into its impact across diverse demographic groups. Within the field of policy, it is strongly recommended to integrate the GBL framework into national curriculum design and teacher professional development. In terms of applicability, GBL modules should be developed for science topics that have been proven effective, such as genetics, forces, and chemical reactions, to enable broader and more systematic implementation."

REFERENCES

Ahmad, W.F.B.W., Shafie, A.B., & Latif, M.H.A.B.A. (2010). Role-Playing Game-Based Learning in Mathematics. *The Electronic Journal of Mathematics and Technology*, 4(2), 185–196. https://atcm.mathandtech.org/EP2009/papers_full/2812009_17098.pdf

- Aida, H., Sumarni, W., Marwoto, P., Subali, B., & Ellianawati, E. (2022). Development of the "Curious Scientist" game to practice scientific thinking skills. *Jurnal Penelitian Pendidikan IPA*, 8(3), 1320–1328. https://doi.org/10.29303/jppipa.v8i3.1643
- Al-Khayat, M.R., Gargash, M.U., & Atiq, A.F. (2023). The effectiveness of game-based learning in enhancing students 'motivation and cognitive skills. *Journal of Education and Teaching Methods*, 2(3), 50–62. https://doi.org/10.58425/jetm.v2i3.199
- Alotaibi, M.S. (2024). Game-based learning in early childhood education: a systematic review and meta-analysis. *Frontiers in Psychology*, *15*(April). https://doi.org/10.3389/fpsyg.2024.1307881
- Alper, A., Öztaþ, E.Þ., Atun, H., Çýnar, D., & Moyenga, M. (2021). A systematic literature review towards the research of game-based learning with augmented reality. *International Journal of Technology in Education and Science*, *5*(2), 224–244. https://doi.org/10.46328/ijtes.176
- Arboleya-García, E., & Miralles, L. (2022). 'The game of the sea': An interdisciplinary educational board game on the marine environment and ocean awareness for primary and secondary students. *Education Sciences*, 12(1). https://doi.org/10.3390/educsci12010057
- Asniza, I. N., Zuraidah, M.O.S., Baharuddin, A.R.M., Zuhair, Z.M., & Nooraýda, Y. (2021). Online Game-Based Learning Using Kahoot! to Enhance Pre-University Students' Active Learning: A Students' Perception in Biology Classroom. Journal of Turkish Science Education, 18(1), 145–160. https://doi.org/10.36681/tused.2021.57
- Baç, H., & Çalik, M. (2021). Designing an argumentation-based educational digital game to teach the subject of force. *Physics Education*, *56*(3), 1–6. https://doi.org/10.1088/1361-6552/abdae8
- Bodnar, C.A., & Clark, R.M. (2017). Can game-based learning enhance engineering communication skills? *IEEE Transactions on Professional Communication*, 60(1), 24–41. https://doi.org/10.1109/TPC.2016.2632838
- Chen, C.-Y., Huang, H.-J., Lien, C.-J., & Lu, Y.-L. (2020). Effects of multi-genre digital game-based instruction on students' conceptual understanding, argumentation skills, and learning experiences. *IEEE Access*, *8*, 110643–110655. https://doi.org/10.1109/ACCESS.2020.3000659
- Chen, M.-P., Wong, Y.-T., & Wang, L.-C. (2014). Effects of type of exploratory strategy and prior knowledge on middle school students' learning of chemical formulas from a 3D role-playing game. *Educational Technology Research and Development*, 62(2), 163–185. https://doi.org/10.1007/s11423-013-9324-3

- Chen, S., Husnaini, S.J., & Chen, J.-J. (2020). Effects of games on students' emotions of learning science and achievement in chemistry. *International Journal of Science Education*, 42(13), 2224–2245. https://doi.org/10.1080/09500693.2020.1817607
- Chen, Y.-C., Lu, Y.-L., & Lien, C.-J. (2021). Learning environments with different levels of technological engagement: A comparison of game-based, video-based, and traditional instruction on students' learning. *Interactive Learning Environments*, 29(8), 1363–1379. https://doi.org/10.1080/10494820.2019.1628781
- Corredor, J., Gaydos, M., & Squire, K. (2014). Seeing change in time: Video games to teach about temporal change in scientific phenomena. *Journal of Science Education and Technology*, *23*(3), 324–343. https://doi.org/10.1007/s10956-013-9466-4
- Dorji, U., Panjaburee, P., & Srisawasdi, N. (2015a). A learning cycle approach to developing educational computer game for improving students' learning and awareness in electric energy consumption and conservation. *Educational Technology and Society*, *18*(1), 91–105.
- Dorji, U., Panjaburee, P., & Srisawasdi, N. (2015b). Gender differences in students' learning achievements and awareness through residence energy saving game-based inquiry playing. *Journal of Computers in Education*, *2*(2), 227–243. https://doi.org/10.1007/s40692-015-0033-2
- Eyupoglu, T.F., & Nietfeld, J.L. (2019). Intrinsic motivation in game-based learning environments. *Game-Based Assessment Revisited* (Issue November, pp. 85–102). https://doi.org/10.1007/978-3-030-15569-8_5
- Hainey, T., Connolly, T. M., Boyle, E.A., Wilson, A., & Razak, A. (2016). A systematic literature review of games-based learning empirical evidence in primary education. *Computers and Education*, 102, 202–223. https://doi.org/10.1016/j.compedu.2016.09.001
- Ho, S.J., Hsu, Y.S., Lai, C.H., Chen, F.H., & Yang, M.H. (2022). Applying game-based experiential learning to comprehensive sustainable development-based education. *Sustainability (Switzerland)*, *14*(3), 1–20. https://doi.org/10.3390/su14031172
- Hosseinpour, A., & Keshmiri, F. (2025). The effect of interprofessional game-based learning on perceived cognitive load and self-efficacy in interprofessional communication and collaboration in patient safety incidents. *PLoS ONE*, *20*(4 April). https://doi.org/10.1371/journal.pone.0321346
- Huang, X., He, J., & Wang, H. (2020). A case study: Students' perception of a collaborative game-based virtual learning environment. *Proceedings of 6th International Conference of the Immersive Learning Research Network, ILRN 2020, iLRN*, 46–53. https://doi.org/10.23919/iLRN47897.2020.9155159

- Hung, C.-M., Huang, I., & Hwang, G.-J. (2014). Effects of digital game-based learning on students' self-efficacy, motivation, anxiety, and achievements in learning mathematics. *Journal of Computers in Education*, 1(2–3), 151–166. https://doi.org/10.1007/s40692-014-0008-8
- Jabbar, A.I.A., & Felicia, P. (2015). Gameplay engagement and learning in game-based learning: A systematic review. *Review of Educational Research*, 85(4), 740–779. https://doi.org/10.3102/0034654315577210
- Jankoviæ, A., & Lambiæ, D. (2022). Effect of game-based learning via Kahoot and Quizizz on the academic achievement of third grade. *Journal of Baltic Science Education*, 21(2), 224–231. https://files.eric.ed.gov/fulltext/EJ1346803.pdf
- Jones, S.M., Katyal, P., Xie, X., Nicolas, M.P., Leung, E.M., Noland, D.M., & Montclare, J.K. (2019). A 'KAHOOT!' Approach: The effectiveness of game-based learning for an advanced placement Biology class. *Simulation and Gaming*, *50*(6), 832–847. https://doi.org/10.1177/1046878119882048
- Kaldarova, B., Omarov, B., Zhaidakbayeva, L., Tursynbayev, A., Beissenova, G., Kurmanbayev, B., & Anarbayev, A. (2023). Applying game-based learning to a primary school class in computer science terminology learning. Frontiers in Education, 8 (February), 1–10. https://doi.org/10.3389/feduc.2023.1100275
- Kao, G.Y.-M., Chiang, C.-H., & Sun, C.-T. (2017). Customizing scaffolds for game-based learning in physics: Impacts on knowledge acquisition and game design creativity. *Computers and Education*, 113, 294–312. https://doi.org/10.1016/j.compedu.2017.05.022
- Kitchenham, B., & Charters, S.M. (2007). *Guidelines for performing systematic literature reviews in software engineering*. Technical Report EBSE 2007-001. Keele University and Durham University Joint Report, January.
- Komalawardhana, N., & Panjaburee, P. (2021). A mobile game-based learning system with personalised conceptual level and mastery learning approach to promoting students' learning perceptions and achievements. *International Journal of Mobile Learning and Organisation*, 15(1), 29–49. https://doi.org/10.1504/IJMLO.2021.111596
- Kotzebue, L. Von, Zumbach, J., & Brandlmayr, A. (2022). Digital escape rooms as game-based learning environments: A study in sex education. *Multimodal Technologies and Interaction*, 6(2). https://doi.org/10.3390/mti6020008
- Lai, C.-H., Lee, T.-P., Jong, B.-S., & Hsia, Y.-T. (2012). A research on applying game-based learning to enhance the participation of student. *Lecture Notes in Electrical Engineering*, 181 LNEE, 311–318. https://doi.org/10.1007/978-94-007-5076-0_36
- Lau, R. W. H., Yen, N. Y., Li, F., & Wah, B. (2014). Recent development in multimedia e-learning technologies. *World Wide Web*, *17*(2), 189–198. https://doi.org/

10.1007/s11280-013-0206-8

- Lestari, S. W., Agung, L., & Musadad, A. A. (2019). *Android based adventure games to enhance vocational high school students' critical thinking skills*. 3–8. https://doi.org/10.4108/eai.27-4-2019.2286917
- Li, H., & Zhang, M. (2025). Museum game-based learning: innovative approaches from a constructivist perspective. *Frontiers in Education*, *10*(May), 1–11. https://doi.org/10.3389/feduc.2025.1576207
- Li, L., Suacamram, M., & Tanya, N. (2023). Game design to improve thai speaking skills for chinese students. *International Journal of Instruction*, 16(1), 741–752. https://doi.org/10.29333/iji.2023.16141a
- Li, M.-C., & Tsai, C.-C. (2013). Game-Based learning in science education: A review of relevant research. *Journal of Science Education and Technology*, 22(6), 877–898. https://doi.org/10.1007/s10956-013-9436-x
- Meluso, A., Zheng, M., Spires, H. A., & Lester, J. (2012). Enhancing 5th graders' science content knowledge and self-efficacy through game-based learning. *Computers and Education*, *59*(2), 497–504. https://doi.org/10.1016/j.compedu.2011.12.019
- Ninaus, M., Moeller, K., McMullen, J., & Kiili, K. (2017). Acceptance of game-based learning and intrinsic motivation as predictors for learning success and flow experience. *International Journal of Serious Games*, *4*(3), 15–30. https://doi.org/10.17083/ijsq.v4i3.176
- Noroozi, O., Dehghanzadeh, H., & Talaee, E. (2020). A systematic review on the impacts of game-based learning on argumentation skills. *Entertainment Computing*, 35(April), 100369. https://doi.org/10.1016/j.entcom.2020.100369
- Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., et al (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *International Journal of Surgery*, 88(March). https://doi.org/10.1016/j.ijsu.2021.105906
- Pfirman, S., Hamilton, L., Turrin, M., Narveson, C., & Lloyd, C. A. (2021). Polar knowledge of US students as indicated by an online Kahoot! quiz game. *Journal of Geoscience Education*, 69(2), 150–165. https://doi.org/10.1080/10899995.2021.1877526
- Pitarch, R. C. (2018). An approach to digital game-based learning: Video-games principles and applications in foreign language learning. *Journal of Language Teaching and Research*, 9(6), 1147–1159. https://doi.org/10.17507/jltr.0906.04
- Pramono, A., Pujiyanto, Puspasari, B.D., & Dhanti, N.S. (2021). Character thematic education game "AK@R" of society themes for children with Malang-Indonesian visualize. *International Journal of Instruction*, 14(2), 179–196.

- https://eric.ed.gov/?id=EJ1291215
- Price, C.A., Gean, K., Christensen, C.G., Beheshti, E., Pernot, B., Segovia, G., et al. (2016). Casual games and casual learning about human biological systems. *Journal of Science Education and Technology*, 25(1), 111–126. https://doi.org/10.1007/s10956-015-9580-6
- Proulx, J.N., Romero, M., & Arnab, S. (2017). Learning mechanics and game mechanics under the perspective of self-determination theory to foster motivation in digital game based learning. *Simulation and Gaming*, *48*(1), 81–97. https://doi.org/10.1177/1046878116674399
- Qian, M., & Clark, K. R. (2016). Game-based Learning and 21st century skills: A review of recent research. *Computers in Human Behavior*, 63, 50–58. https://doi.org/10.1016/j.chb.2016.05.023
- Raduloviæ, B. (2021). Educational efficiency and students' involvement of teaching approach based on game-based student response system. *Journal of Baltic Science Education*, 20(3), 495–506. https://doi.org/10.33225/jbse/21.20.495
- Rajan, S. S. (2022). Effectiveness of game based learning to enhance student learning. *Technoarete Transactions on Application of Information and Communication Technology(ICT) in Education*, 1(1), 6–11. https://doi.org/10.36647/ttaicte/01.01.a002
- Ristanto, R.H., Kristiani, E., & Lisanti, E. (2022). Flipped Classroom–Digital Game-Based Learning (FC-DGBL): Enhancing genetics conceptual understanding of students in bilingual programme. *Journal of Turkish Science Education*, 19(1), 328–348. https://doi.org/10.36681/tused.2022.1124
- Rosydiana, E.A., Sudjimat, D.A., & Utama, C. (2023). Effect of digital learning media using scratch game based learning on student problem solving skills. *Jurnal Penelitian Pendidikan IPA*, 9(11), 10010–10015. https://doi.org/10.29303/jppipa.v9i11.4876
- Ryu, H.B., Parsons, D., & Lee, H. (2021). Using game-based collaborative learning to enhance critical thinking skills. *Advances in Affective and Pleasurable Design*, 14(July). https://doi.org/10.54941/ahfe100594
- Sabourin, J., Shores, L.R., Mott, B. W., & Lester, J. C. (2012). Predicting student self-regulation strategies in game-based learning environments. *Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 7315 LNCS, 141–150. https://doi.org/10.1007/978-3-642-30950-2_19
- Sadler, T.D., Romine, W.L., Menon, D., Ferdig, R.E., & Annetta, L. (2015). Learning biology through innovative curricula: A comparison of game- and nongame-based approaches. *Science Education*, 99(4), 696–720. https://doi.org/10.1002/sce.21171

- Safitri, R.R., & Jumadi, J. (2024). Game-Based learning media with problem-based learning model in science/: Effort to enhance critical thinking skills. 2024 6th International Workshop on Artificial Intelligence and Education (WAIE), Tokyo, Japan, 214–219. https://doi.org/10.1109/WAIE63876.2024.00046
- Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. *Computer Science Education Research Conference (CSERC '11)*, 81–86. https://dl.acm.org/doi/10.5555/2043594.2043601
- Siagian, S., Mursid, & Wau, Y. (2007). Development of interactive multimedia learning in learning instructional design. *Journal of Korean Society of Medical Informatics*, 13(3), 221. https://doi.org/10.4258/jksmi.2007.13.3.221
- Sun, L., Ruokamo, H., Siklander, P., Li, B., & Devlin, K. (2021). Primary school students' perceptions of scaffolding in digital game-based learning in mathematics. *Learning, Culture and Social Interaction*, 28(January 2020), 100457. https://doi.org/10.1016/j.lcsi.2020.100457
- Sung, H.-Y., & Hwang, G.-J. (2013). A collaborative game-based learning approach to improving students' learning performance in science courses. *Computers and Education*, *63*, 43–51. https://doi.org/10.1016/j.compedu.2012.11.019
- Tsai, C. Y., Lin, H. shyang, & Liu, S. C. (2020). The effect of pedagogical GAME model on students' PISA scientific competencies. *Journal of Computer Assisted Learning*, *36*(3), 359–369. https://doi.org/10.1111/jcal.12406
- Ubaidullah, N. H., Hamid, J., & Mohamed, Z. (2019). Integrating the arcs motivational elements into an on-line game-based learning application: Does the application enhance students' motivation in learning programming? *International Journal of Innovative Technology and Exploring Engineering*, 8(11), 1493–1501. https://doi.org/10.35940/ijitee.K1872.0981119
- Videnovik, M., Trajkovik, V., Kiønig, L.V., & Vold, T. (2020). Increasing quality of learning experience using augmented reality educational games. *Multimedia Tools and Applications*, 79(33–34), 23861–23885. https://doi.org/10.1007/s11042-020-09046-7
- Wang, M., & Zheng, X. (2021). Using game-based learning to support learning science: A study with middle school students. *Asia-Pacific Education Researcher*, 30(2), 167-176. https://doi.org/10.1007/s40299-020-00523-
- Wang, Y. (2022). Effects of augmented reality game-based learning on students' engagement. *International Journal of Science Education, Part B: Communication and Public Engagement*, 12(3), 254–270. https://doi.org/10.1080/21548455.2022.2072015
- Yýldýrým, Z., & Baran, M. (2020). A comparative analysis of the effect of physical activity games and digital games on 9th grade students' achievement in

- physics. *Education and Information Technologies*, *26*(1), 543–563. https://doi.org/10.1007/s10639-020-10280-7
- Zou, D., Zhang, R., Xie, H., & Wang, F.L. (2021). Digital game-based learning of information literacy: Effects of gameplay modes on university students' learning performance, motivation, self-efficacy and flow experiences. Australasian Journal of Educational Technology, 37(2), 152–170. https:// doi.org/10.14742/AJET.6682